

# Laser Crystals

NLO Crystals

**Birefringent Crystals** 

AO and EO Crystals

# Neodymium Doped Yttrium Orthovanadate (Nd:YVO4)

## Introductions



Nd:YVO4 is the most efficient laser host crystal for diode pumping among the current commercial laser crystals, especially, for low to middle power density. This is mainly for its absorption and emission features surpassing Nd:YAG. Pumped by laser diodes, Nd: YVO4 crystal has been incorporated with high NLO coefficient crystals ( LBO, BBO, or KTP) to

frequency-shift the output from the near infrared to green, blue, or even UV. This incorporation to construct all solid state lasers is an ideal laser tool that can cover the most widespread applications of lasers, including machining, material processing, spectroscopy, wafer inspection, light displays, medical diagnostics, laser printing, and data storage, etc. It has been shown that Nd:YVO4 based diode pumped solid state lasers are rapidly occupying the markets traditionally dominated by water-cooled ion lasers and lamp-pumped lasers, especially when compact design and single-longitudinal-mode outputs are required.

#### **Basic Properties**

| ltems                                        | Specification                                                                                 |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| Crystal Structure:                           | Zircon Tetragonal, space group D4h-I4/amd                                                     |  |  |  |  |
| Cell Parameter:                              | a=b=7.1193 ⊕, c=6.2892 Å                                                                      |  |  |  |  |
| Density:                                     | 4.22g/cm3                                                                                     |  |  |  |  |
| Atomic Density:                              | 1.26x1020 atoms/cm3 (Nd 1.0%)                                                                 |  |  |  |  |
| Mohs Hardness:                               | 4-5 (Glass-like)                                                                              |  |  |  |  |
| Thermal Expansion                            | αa=4.43x10-6/K                                                                                |  |  |  |  |
| Coefficient (300K):                          | α <b>c=11.37x10-6/K</b>                                                                       |  |  |  |  |
| Thermal Conductivity                         | //C: 0.0523W/cm/K                                                                             |  |  |  |  |
| Coefficient (300K):                          | ⊥C: 0.0510W/cm/·K                                                                             |  |  |  |  |
| Lasing wavelength:                           | 1064nm, 1342nm                                                                                |  |  |  |  |
| Thermal optical coefficientdno/dT=8.5×10-6/K |                                                                                               |  |  |  |  |
| (300K):                                      | dne/dT=2.9×10-6/K                                                                             |  |  |  |  |
| Stimulated emission cross-section:           | 25×10-19cm2 @1064nm                                                                           |  |  |  |  |
| Fluorescent lifetime:                        | 90μs(1% Nd doping)                                                                            |  |  |  |  |
| Absorption coefficient:                      | 31.4cm-1 @810nm                                                                               |  |  |  |  |
| Intrinsic loss:                              | 0.02cm-1 @1064nm                                                                              |  |  |  |  |
| Gain bandwidth:                              | 0.96nm @1064nm                                                                                |  |  |  |  |
| Polarized laser emission:                    | $\pi$ polarization; parallel to optic axis(c-axis)                                            |  |  |  |  |
| Diode pumped optical to optical efficiency:  | >60%                                                                                          |  |  |  |  |
| Sellmeier equations                          | no2=3.77834+0.069736/(λ2-0.04724)-0.010813λ2<br>ne2=4.59905 +0.110534/(λ2-0.04813)-0.012676λ2 |  |  |  |  |

Nd:YVO4

Crystal

YVO4 01

Banner Union Applied Optics Co., Ltd.



Laser Crystals

**NLO Crystals** 

**Birefringent Crystals** 

AO and EO Crystals

## Neodymium Doped Yttrium Orthovanadate (Nd:YVO4)

## Laser Properties of Nd:YVO4

1. One most attractive character of Nd:YVO4 is, compared with Nd:YAG, its 5 times larger absorption coefficient in a broader absorption bandwidth around the 808 nm peak pump wavelength, which just matches the standard of high power laser diodes currently available. This means a smaller crystal that could be used for the laser, leading to a more compact laser system. For a given output power, this also means a lower power level at which the laser diode operates, thus extending the lifetime of the expensive laser diode. The broader absorption bandwidth of Nd:YVO4 which may reaches 2.4 to 6.3 times that of Nd:YAG. Besides more efficient pumping, it also means a broader range of selection of diode specifications. This will be helpful to laser system makers for wider tolerance for lower cost choice.

2. Nd:YVO4 crystal has larger stimulated emission cross-sections, both at 1064nm and 1342nm. When a-axis cut Nd:YVO4 crystal lasing at 1064m, it is about 4 times higher than that of Nd:YAG, while at 1340nm the stimulated cross-section is 18 times larger, which leads to a CW operation completely outperforming Nd:YAG at 1320nm. These make Nd:YVO4 laser be easy to maintain a strong single line emission at the two wavelengths.

**3.** Another important character of Nd:YVO4 lasers is, because it is an uniaxial rather than a high symmetry of cubic as Nd:YAG, it only emits a linearly polarized laser, thus avoiding undesired birefringent effects on the frequency conversion. Although the lifetime of Nd:YVO4 is about 2.7 times shorter than that of Nd:YAG, its slope efficiency can be still quite high for a proper design of laser cavity, because of its high pump quantum efficiency.

The major laser properties of Nd:YVO4 vs Nd:YAG are listed in Table below, including stimulated emission cross-sections ( $\sigma$ ),Absorption Coefficient ( $\alpha$ ) Fluorescent lifetime ( $\tau$ ), Absorption Length (La), threshold Power (Pth) and Pump Quantum Efficiency ( $\eta$ ).

| LASER<br>CRYSTAL            | DOPING<br>(atm%) | σ<br>(x10-19<br>CM <sup>2</sup> ) | α<br>(cm <sup>-1</sup> ) | т<br>(µs) | L <sub>α</sub><br>(mm) | P <sub>TH</sub><br>(mw) | ηs<br>(%) |
|-----------------------------|------------------|-----------------------------------|--------------------------|-----------|------------------------|-------------------------|-----------|
| Nd:YVO <sub>4</sub> (a-cut) | 1.0              | 25                                | 31.2                     | 90        | 0.32                   | 30                      | 52        |
|                             | 2.0              | 25                                | 72.4                     | 50        | 0.14                   | 78                      | 48.6      |
| Nd:YVO <sub>4</sub> (c-cut) | 1.1              | 7                                 | 9.2                      | 90        |                        | 231                     | 45.5      |
| Nd:YAG                      | 0.85             | 6                                 | 7.1                      | 230       | 1.41                   | 115                     | 38.6      |

## Laser Properties of Nd:YVO4 vs Nd:YAG

#### Typical Results

# Diode pumped Nd:YVO4 laser output comparing with diode pumped Nd:YAG laser.

| Crystals            | Size (mm <sup>3</sup> ) | Pump Power | Output (at 1064nm) |
|---------------------|-------------------------|------------|--------------------|
| Nd:YVO <sub>4</sub> | 3x3x1                   | 850mW      | 350mW              |
| Nd:YVO <sub>4</sub> | 3x3x5                   | 15W        | 6W                 |
| Nd:YAG              | 3x3x2                   | 850mW      | 34mW               |

Nd:YVO4

Diode pumped Nd:YVO4+KTP green laser. YVO4 01 8W green laser was generated from a 15W LD pumped 0.5%Nd:YVO4 with

Crystal

To find out more about Optics, please visit http://www.buoptics.com

Banner Union Applied Optics Co., Ltd.



Laser Crystals

NLO Crystals

**Birefringent Crystals** 

AO and EO Crystals

# Neodymium Doped Yttrium Orthovanadate (Nd:YVO4)

# Laser Properties of Nd:YVO4

## intracavity KTP.

200mW green outputs are generated from 1 W LD pumped 2%Nd:YVO4 lasers by using Banner Union's 2x2x5mm KTP and 3x3x1mm Nd:YVO4.

2-5mw green outputs are generated from 180mw LD pumped 3%Nd:YVO4 and KTP glued crystals. For more details, please refer to Glued Crystals.

#### **Coating Service**

- ♦ Both ends AR/AR-1064/808nm, R<0.2%@1064nm,R<2%@808nm
- \$\S1:HR@1064&532 nm,HT808 nm,
  \$\R>99.8\%@1064&532nm,T>90\%@808nm
  - S2:AR@1064&532 nm, R<0.2%@1064nm,R<0.5%@532nm
- \$\lambda\$ S1:HR@1064,HT808, R>99.8%@1064nm,T>95%@808nm
  \$\lambda\$ S2:AR@1064, R<0.1%@1064nm.</li>
- $\diamond$  S1,S2 AR-coated, S3:gold/chrome plated.
- ♦ Both ends AR/AR-1064 nm; S3:AR-808 nm
- ◇ Other coatings are available upon request.

## **Stand Specifications**

| Items                | Specifications                               |  |  |  |
|----------------------|----------------------------------------------|--|--|--|
|                      | (W±0.1mm)x(H±0.1mm)x(L+0.5/-0.1mm) (L≥2.5mm) |  |  |  |
| Dimension Tolerance  |                                              |  |  |  |
|                      | (W±0.1mm)x(H±0.1mm)x(L+0.2/-0.1mm) (L<2.5mm) |  |  |  |
| Clear aperture       | central 90% of the diameter                  |  |  |  |
|                      | < λ/8 @ 632.8nm (L≥2.5mm)                    |  |  |  |
| Flatness             |                                              |  |  |  |
|                      | < λ/4 @ 632.8nm (L<2.5mm)                    |  |  |  |
| wavefront distortion | < λ/4 @ 632.8nm                              |  |  |  |
| Bevel                | ≪0.2mm@45°                                   |  |  |  |
| Chip                 | ≤0.1mm                                       |  |  |  |
| Surface Quality      | scratch and dig 10-5                         |  |  |  |
| Parallelism          | $\leqslant$ 20 arc seconds                   |  |  |  |
| Perpendicularity     | $\leq$ 5 arc minutes                         |  |  |  |
| Angle tolerance      | ≤ 0.5°                                       |  |  |  |
| Damage               | >1 for 1064nm, TEM00, 10ns, 10Hz (AR-coated) |  |  |  |
| threshold[GW/cm ]:   |                                              |  |  |  |

Nd:YVO4

Crystal

YVO4 01

To find out more about Optics, please visit http://www.buoptics.com